
Trevor Stewart University of Toronto

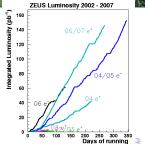
On Behalf of the ZEUS Collaboration

DIS 2011, 11-15 April, Newport News, VA USA

- 1 Charged current e^+p .
- 2 Neutral current e^+p .

HERA II with Longitudinal Polarised e^{\pm} Beams

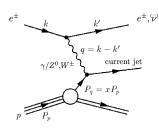
p beam: 920 GeV


HERA

 e^{\pm} beam: 27.5 GeV

centre-of-mass energy: 318 GeV

- Two general purpose experiments, H1 and ZEUS (ZEUS data to be shown).
- $\approx 0.5 fb^{-1}$ taken by each experiment.
- HERA II upgrade:
 - Increased luminosity.
 - Longitudinally polarised e[±] beams.
- Mean longitudinal polarisation, $P_e = (N_R N_L)/(N_R + N_L) \approx 30 40\%$



Trevor StewartUniversity of Toronto

Deep Inelastic Scattering

DIS

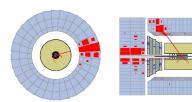
- Neutral Current (NC), γ or Z_0 exchange. $e^{\pm}p \rightarrow e^{\pm}X$
- Charged Current (CC), W^{\pm} exchange. $e^{\pm} p \rightarrow \nu X$

Variables which characterize DIS:

 Q² probing power, negative 4-momentum squared: $Q^2 = -q^2 = -(k - k')$

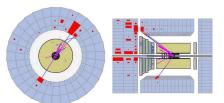
■ Bjorken x, momentum fraction of proton carried by struck quark:

$$x = Q^2/2p \cdot q$$


Inelasticity v: $y = p \cdot q/p \cdot k$

s is the centre-of-mass energy squared: $s = (p + k)^2$

These are related by:
$$Q^2 = sxy$$


Charged and Neutral Current events in the ZEUS detector

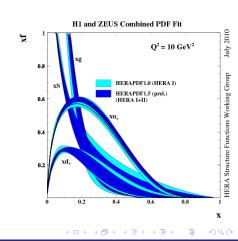
Charged Current

- $\mathbf{v}(\bar{\nu})$ escapes the detector volume.
- Jet energy deposits not blanced by e^{\pm} deposits.
- Characterised by missing- P_t .

Neutral Current

- Well measured scattered e[±].
- \bullet energy deposits and Jet(s) balanced in ϕ .

CC cross section $CC e^+p$ results NC cross section $CC e^+p$ results Summary


Motivation

Why are High Precision High- Q^2 CC and NC measurements important?

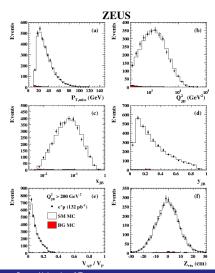
 The CC cross sections give a powerful probe of the flavour specific parton distributions (PDFs).

Motivation

- The NC cross sections are sensitive to all flavours.
- The difference between the e^+p and e^-p NC cross sections give direct access to the structure function xF_3 .
- The longitudinal polarisation asymmetry, $A^+ \approx a_e v_q$ allows parity violation to be directly measured.

In the SM the W^{\pm} interact only with left(right) (anti-)particles.

$$\sigma_{CC}^{e^{\pm}p} = (1 \pm P_e)\sigma_{CC,P_e=0}^{e^{\pm}p}$$


$$\frac{d^2\sigma_{CC}^{e^{\pm}p}}{dxdQ^2} = (1 \pm P_e)\frac{G_F^2}{4\pi x}(\frac{M_W^2}{M_W^2 + Q^2})^2\tilde{\sigma}_{CC}^{e^{\pm}p}$$

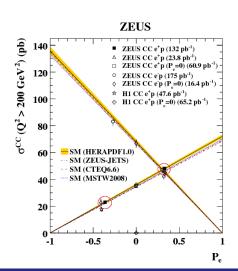
where $\tilde{\sigma}_{CC}^{e^{\pm}p}$ is the reduced cross section. e^+ and e^- sensitive to different quark densities:

$$\tilde{\sigma}_{CC}^{e^+p} = x[(\bar{u} + \bar{c}) + (1 - y)^2(d + s)]$$

$$\tilde{\sigma}_{CC}^{e^-p} = x[(u + c) + (1 - y)^2(\bar{d} + \bar{s})]$$

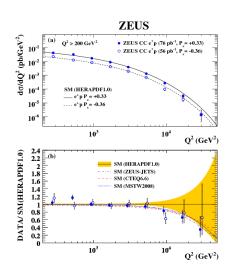
Charged Current Sample (e^+p Data)

- Results published in 2010.
 - Eur. Phys. J. C (2010) 70: 945963.
- e^+p data, taken 2006-07, $\mathcal{L} = 132pb^{-1}$

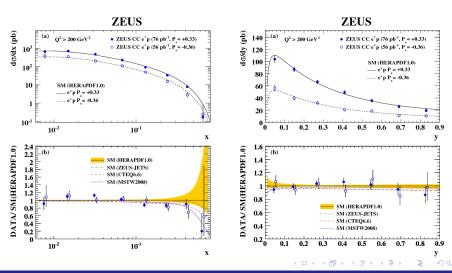

$$P_e = +33\%, \ \mathcal{L} = 75.8 pb^{-1}$$

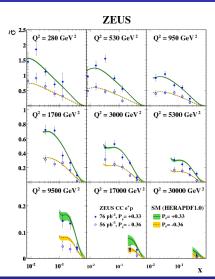
$$P_e = -36\%, \ \mathcal{L} = 56.0 pb^{-1}$$

Data well understood.

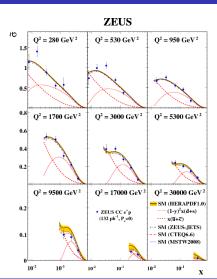

Total cross section with +ve and -ve P_e

- The total cross section as a function of the longitudinal polarisation of the lepton beam.
 - Results from the e⁺p analysis are shown as filled squares for +ve and -ve polarisation (circled in red).
 - Previous e^+p and e^-p results from H1 and ZEUS also shown.
 - Results not included in SM predictions (HERAPDF1.0).
 - Measurements consistent with SM expectations.

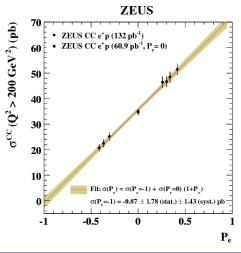

$d\sigma/dQ^2$ with +ve and -ve P_e


- Overall shift in cross sections due to effect of polarisation.
- Will help constrain PDF fit.
- Good agreement with SM expectation.

$d\sigma/dx$ and $d\sigma/dy$ with +ve and -ve P_e


$\tilde{\sigma}$ with +ve and -ve P_e

- Effect of polarisation clearly seen.
- Adding this data will further constrain the PDF fits.
- Good agreement with SM predictions



$\tilde{\sigma}$ with $P_e = 0$

- The e⁺p CC reduced cross section constrain the d quark density.
- As seen earlier, the reduced cross section, $\tilde{\sigma}$, at LO can be written as a sum of $x(\bar{u} + \bar{c})$ and (d + s) contributions.

Total cross section at multiple polarisation values

- \blacksquare CC e^+p Cross section becomes 0 for $P_e = -1$ positron beam.
 - A non-zero cross section might point to the existance of a right-handed W boson, W_R .
- Extrapolation to $P_e=-1$ consitant with 0.
- Limit placed on $\sigma^{CC}(P_e = -1)$ and M_{W_P} GeV consistent with other experiments.

Neutral Current Cross Section

■ Mediated by both γ and Z_0

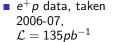
$$\begin{split} &\frac{d^2 \sigma_{NC}^{e^+ p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L] \\ &\tilde{\sigma}_{NC}^{e^+ p} = \frac{xQ^4}{2\pi \alpha^2} \frac{1}{Y_+} \frac{d^2 \sigma_{NC}^{e^+ p}}{dx dQ^2} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L \end{split}$$

- Where $\tilde{F}_2, x\tilde{F}_3$ and \tilde{F}_L are the generalised structure functions.
- \blacksquare Y_+ is given by:

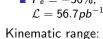
$$Y_{\pm}=1\pm(1-y)^2$$

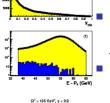
Generalised Structure Functions

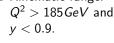
■ The generalized structure functions are given by:


$$\begin{split} \tilde{F}_2 &= F_2^{\gamma} + \kappa (-\nu_e \pm P_e a_e) F_2^{\gamma Z} + \kappa^2 (\nu_e^2 + a_e^2 \pm 2 P_e \nu_e a_e) F_2^{ZZ} \\ \times \tilde{F}_3 &= \kappa (-a_e \mp P_e \nu_e) \times F_3^{\gamma Z} + \kappa^2 (2\nu_e a_e \pm P_e (\nu_e^2 + a_e^2)) \times F_3^{ZZ} \\ \text{where } \kappa &= \frac{1}{\sin^2 2\theta_w} \frac{Q^2}{Q^2 + M_Z^2} \\ \{F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z}\} &= \sum_q \{e_q^2, 2e_q \nu_q, \nu_q^2 + a_q^2\} \times (q + \bar{q}) \\ \{\times F_3^{\gamma Z}, \times F_3^{Z}\} &= \sum_q \{e_q a_q, \nu_q a_q\} 2\times (q - \bar{q}) \end{split}$$

- \tilde{F}_2 dominates $\tilde{\sigma}_{NC}^{e^{\pm}p}$.
- $\mathbf{x}\tilde{F}_3$ contributes only at high Q^2 .
- \tilde{F}_{I} contributes at high y.

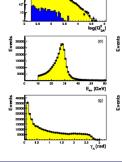

- New result (ZEUS-prel-11-003).
 - Missing result of the HERA-II ZEUS high-Q² inclusive analyses.

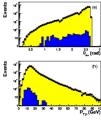

ZEUS



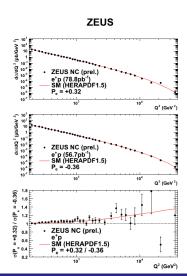
$$P_e = -36\%,$$

 $\mathcal{L} = 56.7 pb^{-1}$





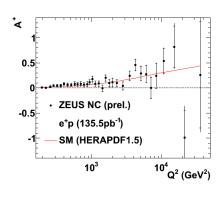
ZEUS e'p (prel), 135.5 pb' MC (NC+Photoproduction) hotoproduction IIC



Data well described.

$d\sigma/dQ^2$ with +ve and -ve P_e

■ The difference between the two polarisation states clearly seen at higher- Q^2 .

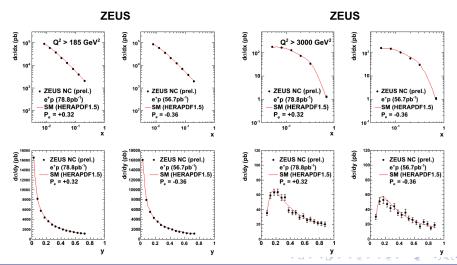

 \leftarrow RH: $d\sigma/dQ^2$ with +ve P_e .

← LH: $d\sigma/dQ^2$ with -ve P_e .

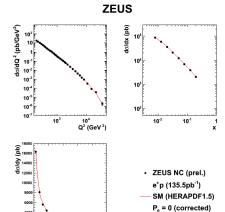
 \leftarrow RH/LH: ratio of cross sections +ve P_e /-ve P_e .

 These results not included in the shown SM expectation (HERAPDF1.5).

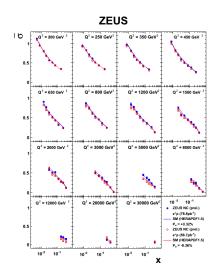
ZEUS

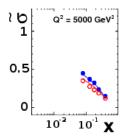


$$A^{+} = \frac{2}{P_{+} - P_{-}} \frac{\sigma^{+}(P_{+}) - \sigma^{+}(P_{-})}{\sigma^{+}(P_{+}) + \sigma^{+}(P_{-})}$$

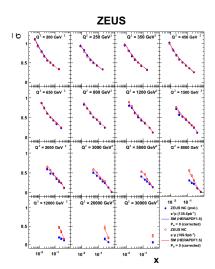

- $A^{+} \approx a_{\rm e} \kappa \frac{F_2^{\gamma Z}}{F_2^{\gamma}} = a_{\rm e} \kappa \frac{2e_q \nu_q}{e_q^2} = \infty$ $a_{\rm e} \nu_q$
- \blacksquare A^+ sensitive to ν_q .
- \blacksquare A^+ increase with Q^2 .

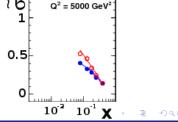
$d\sigma/dx$ and $d\sigma/dy$ with +ve and -ve P_e





■ These results will help constrain the PDFs.


$\tilde{\sigma}$ with +ve and -ve P_e

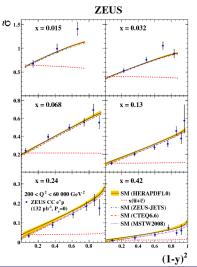

- Closed circles \rightarrow +ve P_e .
- Open circles \rightarrow -ve P_e .
- Effect of polarisation visible at high- Q^2 .

$\tilde{\sigma}$ with $P_e = 0$

- Closed circles \rightarrow Full e^+p data set.
- \blacksquare Open circles \rightarrow Previously measured unpolarised $e^-p \tilde{\sigma}$.
- Difference between e^+p and e^-p clearly seen.
 - This gives us xF_3 .

Summary

Charged Current:


- Polarised single and reduced CC e^+p cross sections have been measured.
- Results published in Eur. Phys. J. C (2010) 70: 945963.
- Results already included in HERAPDF1.5.

Neutral Current:

- Both the single differential and reduced NC e^+p cross sections have been measured for right and left-handed polarisation.
 - Effects of polarisation clearly seen in the e^+p data.
 - The missing piece from the HERA-II High- Q^2 inclusive data.
 - Data will help better constrain HERAPDF.

$\tilde{\sigma}$ vs. $(1-y)^{2}$

- Due to the helicity structure of the W boson, it couples only to left(right)-handed (anti-)fermions.
 - The angular distribution of $e^+\bar{q}$ distribution should be flat $(x(\bar{u}+\bar{c}))$ in the positron-quark centre-of-mass scattering angle θ^* .
 - The e^+q distribution should exhibit a $(1 + cos\theta^*)^2$ as $(1 y)^2 = (1 + cos\theta^*)^2/4$.
 - At LO QCD the y-int gives the $(\bar{u} + \bar{c})$ contribution, and the slope the (d + s)contribution.